

Osaka International Airport

Environmental Report

2017

CONTENTS

1. Basic policies of the ITM Environmental Plan	1
2. Environmental management structure	4
3. Environmental initiatives	5
An airport that respects the local environment •••••••	5
An airport that respects the global environment •••••••	14
An airport that recycles resources ······	19
An airport that respects biodiversity ·····	23
An airport that respects the local community	25
4. Outline of Osaka International Airport	27
Appendices	29

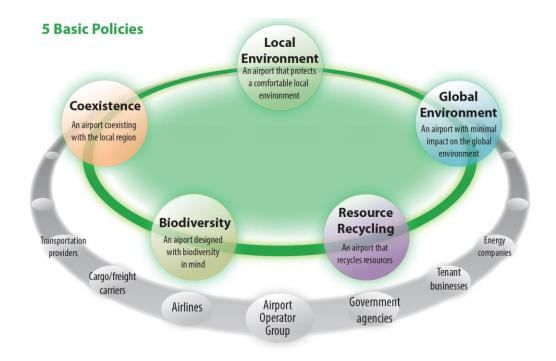
■Eco-Airport

An eco-airport can be defined as an airport that implements measures to protect the environment and create a good environment at the airport and in the surrounding region. In concrete terms, such measures can include conserving energy (reducing CO_2 emissions) and water, reducing waste, and taking other environmental measures in region of the airport.

Outline of ITM Environmental Plan

Osaka International Airport established the ITM Eco-Airport Council based on the eco-friendly airport concept, with airport-related partners as its members. The Council produced the ITM Environmental Plan in March 2007 and revised it in March 2012. The Plan covers items such as the current status of each environmental parameter, environmental targets, and concrete measures, and aims include conserving water and energy (reducing CO_2 emissions), reducing waste at the airport, etc.

Outline of ITM Environmental Plan

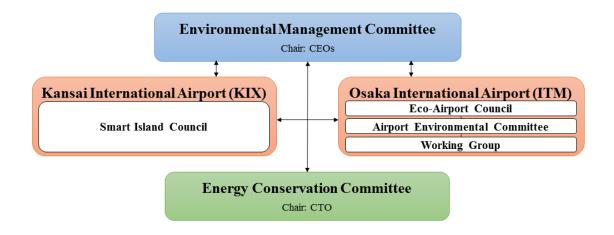

- Adopted: FY2006
- Target activities: All activities at the airport, including people, aircraft, vehicles, monorails, facility operations, etc.
- Area covered: ITM airport and region
- Environmental parameters: Air, energy, noise, water, soil, waste, natural environment, etc.
- Assessment and reporting: An Environmental Report is released yearly, covering Plan implementation status and assessments.

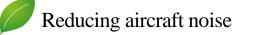
Measures by ITM in the surrounding region

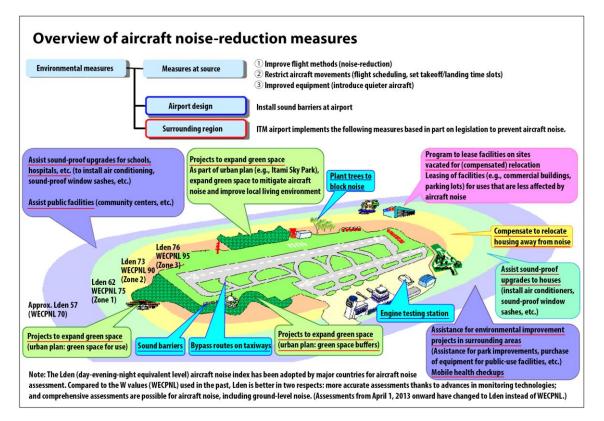
For years, ITM has been taking steps to reduce aircraft noise in the region around the airport and be "an airport that respects the local community," including identifying noise sources and reducing the impacts of noise. These measures include soundproofing upgrades for housing, projects to expand greenspace, monitoring and reporting of data on aircraft noise, and more.

Evolution of ITM Environmental Plan

In July 2012, Kansai International Airport (KIX) and Osaka International Airport (ITM) were integrated, and a decision was also made to integrate their eco-airport policies. As part of efforts to make KIX an eco-airport, the airport developed its third Environmental Plan. It covers environmental measures that can be implemented sustainably as an "environmentally-advanced airport." The Environmental Plan includes measures and environmental targets built upon the five basic policies shown below.

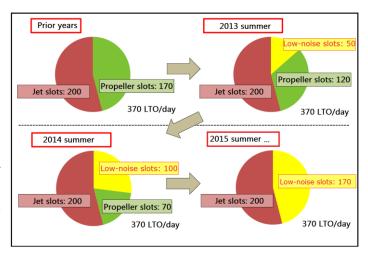

Basic policies	Overall object	tives	ITM initiatives					
	Reduce aircraft noise	Target noise sources	Restrict aircraft movements & hours of operation					
			Promote use of quiet aircraft					
			Collaborate with partners to use low-noise aircraft					
			Landing fees adjusted to aircraft noise					
			Optimal runway selection					
			Noise abatement flight procedures					
			Specify priority flight paths					
			Enforce flight path compliance					
			Restrict use of reverse thrust at night					
			Control noise during aircraft engine testing					
			Promote GPU use, discourage APU use*					
An airport			Other noise reduction actions					
that respects			Measure/monitor aircraft noise					
the local								
environment		Airport design	Install sound-blocking walls					
		Airport region	Compensate residents for relocation					
			Utilize post-relocation sites					
			Sound-proof homes					
			Subsidize sound-proofing of public facilities & homes Subsidize environmental improvements near airport					
			Build/lease noise-resistant facilities					
	Conserve air quality		Promote use of low-emission aircraft*					
	conserve an quanty		Vehicle idling prevention campaign*					
	C		Convert boilers to natural gas fuel					
	Conserve water quality, soil environment		Use eco-friendly anti/deicing fluids					
			Reduce use of snow melting agents					
	Conserve energy		Install energy-efficient equipment					
			Promote energy-efficient lighting, air conditioning, etc.					
			Use LEDs for aviation lighting					
			Organizational measures for energy-saving activities Promote use of low-emission aircraft*					
An airport	Reduce GHG emissions							
that respects the global			Promote GPU use, discourage APU use*					
environment			Vehicle idling prevention campaign*					
environment			Promote public transportation					
	Eco-friendly vehicles		Introduce eco-cars					
	Clean energy		Install electric vehicle charging stations					
			Install photovoltaic systems					
	Zero emissions		Reduce and recycle waste					
			Utilize airport grass clippings (for animal feed, fertilizer)					
			Reduce office waste (use less paper, etc.)					
An airport			Boost recycling rate by sorting waste					
that recycles			Garbage reduction campaign					
resources			Green purchasing					
	Conserve/recycle water		Promote water conservation					
			Use automatic faucets, water-saving fixtures Awareness campaign for water-saving					
			Consider reusing reclaimed water					
An airport that								
respects biodiversity	Conserve nature/landscape		Create green space at airport					
	Disclose information	l	Publish environmental monitoring data, environmental reports					
An airport	Community dialogue		Release information on environmental efforts, programs					
that respects			Offer environmental education					
the local			Hold events at airport					
community	Collaborate with airport		Manage/participate in ITM Eco-Airport Council					
	partners		Collaborate with other airports					
	•		·					


■ Relationship of five basic policies and specific initiatives


Note: Asterisk (*) indicates an initiative that applies to more than one objective.

2. Environmental management structure

To implement the Eco-Airport Plan, the Osaka International Airport Eco-Airport Council was created, with the Osaka Civil Aviation Bureau (Ministry of Land, Infrastructure, Transport and Tourism), airline companies, and other airport businesses. Its function is to establish environmental targets and promote environmental activities in a unified way. The environmental management is structured as shown below.



ITM implements various measures to reduce aircraft noise, including restricting the number of aircraft movements and hours of operation time, as well as encouraging the use of quieter aircraft, establishing flight routines that mitigate noise impacts, and constantly monitoring aircraft noise.

Measures at noise sources

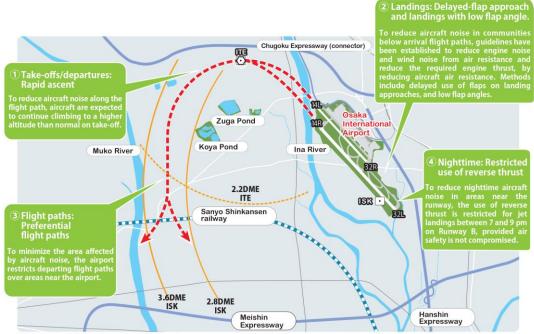
(Restricting flight movements and hours of operation)

ITM restricts aircraft movements (landing-takeoff cycles) to 370 per day, in consideration of noise and other aircraft impacts on the airport region, and starting in the 2015 summer schedule, the shift was made toward quieter propeller aircraft, with 200 slots for jets versus 170 for low-noise aircraft, increasing convenience. We are appealing to airline companies to introduce low-noise aircraft to make use

of these slots. Airport operation is 14 hours per day, from 7 a.m. to 9 p.m., and we strive to keep operations within those hours, in cooperation with airline companies.

Encouraging the use of quieter aircraft

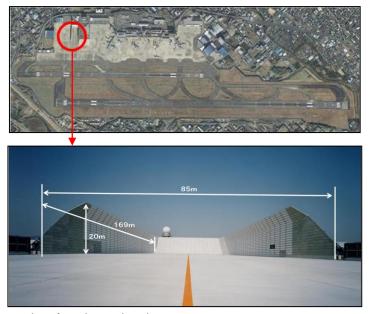
Osaka International Airport promotes the introduction of low-noise aircraft through a unique landing fee system, with discounts for low-noise aircraft and surcharges for high-noise aircraft, based on actual noise levels measured around the airport.


Optimizing runway use

It is normally preferred to have aircraft take off and land into the wind, but to reduce the impacts of aircraft noise on the ground, operations at ITM are normally conducted on Runway 32 as shown below as long conditions are safe (see image for flight direction).

Noise abatement flight procedures

As shown in the graphic below, we also make an effort to mitigate the impacts of aircraft noise by adopting noise abatement flight procedures.



Note: The arrows in the above map illustrate the concept of flight path and are not intended to indicate actual flight routes.

Noise reduction at the airport

• Noise reduction measures during aircraft engine testing

To reduce the impacts of noise emitted during aircraft engine testing, a large sound-blocking wall was installed at the engine testing site, and rules are in place for the location (within sound-blocking facilities), timing, and methods of testing.

■ Aircraft engine testing site

The noise blocking effect reduces the noise level of a B747-400 (take-off power) to below 65 dB in the vicinity of the airport.

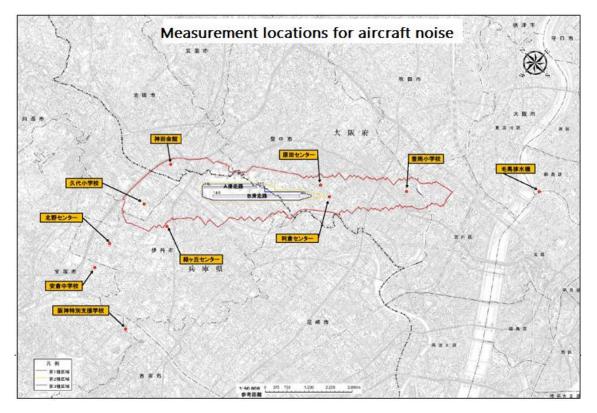
\circ Promoting use of GPUs and limiting use of APUs

In order to reduce noise impacts from auxiliary power units (APUs) while aircraft are parked, we are promoting the use of ground power units (GPUs).

■ GPU usage status GPUs supply electricity and air conditioning.

(Photo: GPU in use at ITM. Electricity is provided as soon as aircraft arrives.)

E.g., in the case of a Boeing 777, an APU at a distance of 20 meters has noise level of 92 dBA, while a GPU is not audible even at a distance of one meter.

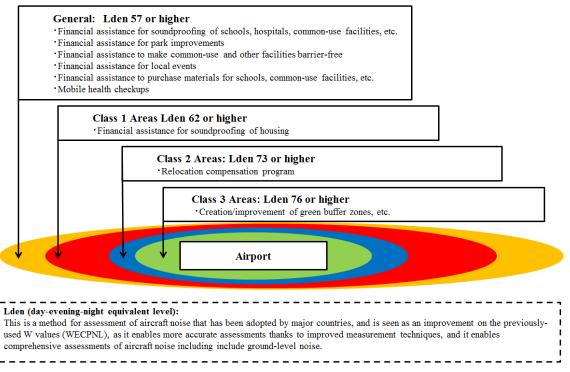

Source: AGP Corp.

• Other measures to reduce noise

Besides aircraft being a noise source, noise is also emitted from ground support equipment (GSE) vehicles. We are working to reduce noise levels at the airport by introducing low-noise equipment such as electric vehicles and electric-powered forklifts.

Measurement and monitoring of aircraft noise

To monitor aircraft noise, ITM conducts continuous monitoring of noise levels at 10 locations in the airport region, and releases the results publicly.

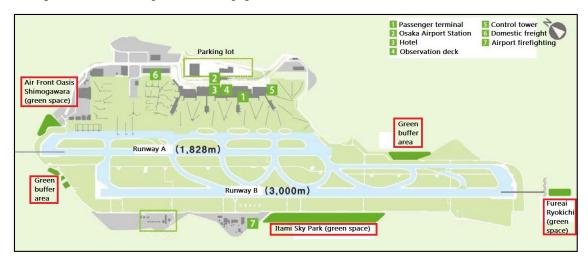

Improving airport design

We have installed noise barrier walls and built noise barrier berms around the airport to mitigate noise impacts from aircraft on the runway, etc.

Measures in the region of the airport

Kansai Airports implements the following measures around the airport to reduce the noise in the region of Osaka International Airport and improve the living environment. Relocation compensation is applied to areas significantly affected by aircraft noise (Class 2 and 3 areas), and land obtained through this means is used to build parks and green space, in an effort to mitigate noise impacts. In Class 1 areas and their vicinity, upgrades are provided to make housing more sound proof.

Relocation compensation programs


For buildings and land located in a zone when it is designated a Class 2 area, the airport has a program to provide compensation for buildings and purchase the land based on an owner's request to relocate outside the Class 2 area.

Utilization of land acquired by compensated relocation program

To prevent new negative impacts of aircraft noise in Class 3 zones around the airport and improve the living environment in the area, we create green spaces as buffer zones (see photos below) between the airport and surrounding areas, through landscaping and planting of vegetation in areas obtained through our relocation compensation program.

With the progress of the relocation compensation program in Class 2 and 3 zones, there has been an increase in vacant sites (after residents have relocated) in the area. Responding to community concerns about losing local cohesiveness, the airport has been working to develop green space in a planned and integrated way, by having Class 2 and 3 zones and surrounding areas designated as green space, as defined under the nation's City Planning Act. Examples include the Itami Sora Park on the Hyogo Prefecture side and Fureai Ryokichi (public green space) on the Osaka Prefecture side of the airport.

Also, with the aims of letting local residents become familiar with the airport through greenery and positive experiences as well as contributing to disaster prevention in the region, the Air Front Oasis Shimogawara was designed to improve the living environment for local residents and also have disaster prevention features included in the green space, and adjacent to this, Itami City developed the Shimogawara Green Area (photos on next page).

Itami Sky Park

This green space opened in 2008 as a place of relaxation for the local community and is also designed to serve as a refuge area in time of disaster.

Fureai Ryokuchi (Friendship Green Square) in Toyonaka City

This is green space for use by the local community, designed with public input, with sports and recreational facilities. It includes biotopes (see page 23), a multi-purpose square, tennis courts, heated swimming pool, grass areas, a playing field, and more.

Air Front Oasis Shimogawara and Shimogawara Green Area

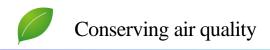
Air Front Oasis Shimogawara is well-located with a view of Osaka International Airport. Its main feature is an observation deck with a commanding view of the daily activities at the airport, but it also includes a monument to the wind and other items with an aeronautical motif. Together with the Shimogawara Green Area provided by Itami City, it is a place for locals to relax and enjoy the play and athletic equipment, and rest area.

We lease these areas to local governments at no charge for various uses including children's play and water tanks for fire fighting.

Sound-proofing upgrade program in airport region

Below are examples of sound-proofing upgrades and other programs offered in the airport region.

	Category	Outline
Soundproofing of public facilities	Soundproofing of schools, etc.	If the aircraft noise exceeds intensity and frequency limits specified by legislation* related to aircraft noise prevention, a subsidy is provided to surrounding local governments and other bodies for work (soundproofing, installation of upgraded air conditioning) to prevent or reduce aircraft noise in facilities including schools, child care centers, and hospitals, etc.
	Improvement of shared or common-use facilities	Based on legislation,* a subsidy is provided to municipal governments where noise reaches Lden 57 (or W70), for improvements of shared or common-use facilities used by local residents for learning and other purposes. Eligible work includes new construction, renovation, installation of upgraded air conditioning, etc.
Soundproofing of housing	Soundproofing of housing	Based on legislation,* a subsidy is provided for work to prevent or mitigate aircraft noise (soundproofing, installation of upgraded air conditioning) on housing that was located in Class 1 zones when the national government made the designation.


* Act on Prevention of Damage caused by Aircraft Noise in Areas around Public Airports (Act No. 110 of 1967)

Other programs

	Category	Outline
Other	Mobile health checkups	To promote the good health of residents living near the airport, mobile health checkups are offered, particularly for people who live in areas with greater amounts of aircraft noise.
	Environmental improvements in surrounding areas	In order to improve the living environment around the airport, this program offers subsidies for efforts of the surrounding local governments, to improve noise-measuring equipment, parks, and local facilities, improve convenience, revitalize the area, and other activities.

Modifying and leasing sites acquired by compensated relocation program

In addition to the programs described above, based on the Osaka International Airport Regional Improvement Plan established by the governors of Osaka and Hyogo prefectures, in order to effectively utilize sites after residents have relocated elsewhere in compensated relocation programs, we modify and lease the sites as commercial facilities or parking lots, etc., as their uses are less likely to be affected by aircraft noise. In doing this we also consider the living environment around the airport.

Converting building boilers to gas

In November 2011, we converted boilers in the terminal building from heating oil A to gas. This contributes to air quality conservation by reducing emissions of hazardous substances generated from burning heavy oil.

• Gas-fired hot water boiler

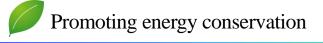
Boilers are being converted from heavy heating oil (containing sulfur, other pollutants), reducing air pollution.

Conserving water quality

■ Conversion to eco-friendly snow-melting agents

In the past, ITM used urea-based snow-melting agents, but large runoff of this agent could lead to eutrophication of water bodies. We have therefore switched to acetate-based snow melting agents, which are expected to have lower impacts on water quality.

Reducing consumption of anti-icing and deicing fluid


The consumption of anti-icing and deicing fluid depends largely on weather conditions and fluctuates from year to year. Some operators have upgraded to better spraying equipment, boosting the efficiency of spraying operations.

(2) An airport that respects the global environment

Osaka International Airport promotes energy conservation measures through the Energy Conservation Committee. In internal operations we are putting efforts into green purchasing, energy conservation, and going paperless. In December 2016, our efforts to reduce CO_2 emissions were recognized by the Airports Council International (ACI) when we received Airport Carbon Accreditation (ACA) Level 2. We will continue our efforts in collaboration with airport businesses to reduce CO_2 emissions.

* Airport Carbon Accreditation is an international evaluation and accreditation program to manage and reduce CO₂ emissions from airports. It is the only environmental accreditation program designed specifically for airports. ACA has four levels for carbon management: Mapping (Level 1), Reduction (Level 2), Optimisation (Level 3), and Neutrality (Level 3+).

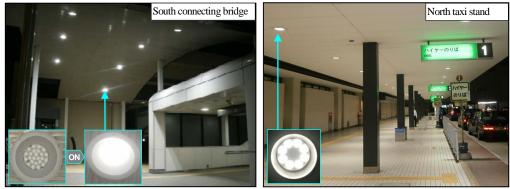
■ Introducing energy-saving equipment

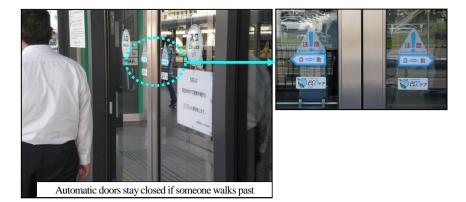
ITM encourages all businesses and contractors aim for high energy efficiency, including the use of energy-saving types of lighting and air conditioning equipment.

• Escalators with motion sensors (passenger terminal, monorail station, and connecting bridge) We have installed motion sensors to reduce electrical consumption at times and locations with fewer users.

- Lighting control based on light sensors (passenger terminal)
- Electricity consumption is reduced by outdoor sensors that automatically turn interior lights on when it is dark outside and off when it is bright outside.

• Control can be set to turn on in lighting conditions between 5 and 300 Lx.


- Bicycle trailers (ANA)
- Eco-friendly hauling: Electric-powered bicycles are used to pull trailers.

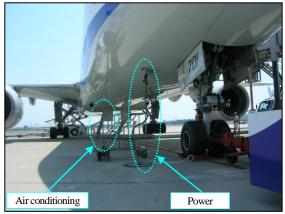

- Heat-reflecting film on windows (passenger terminal)
- Heat-reflecting film on windows reflects sunlight and keeps temperatures down inside the terminal.

- LED lighting (south connecting bridge, north taxi stand)
- LEDs have a long service life, are efficient light sources, and use little electricity, reducing power consumption.

- Eco-friendly automatic door system (passenger terminal)
- Conventional automatic doors tend to slide open unnecessarily if a person simply walks past the door. We have installed sensors that determine whether a person will walk past or through the door. This reduces unneeded door opening, saving power consumption and reducing the load on interior air conditioning. Installed in all north-facing vestibules in the North Terminal.

Reducing greenhouse gas emissions

Promoting the use of low-emission aircraft


Thanks to their high-performance engines and lower weight due to the use of composite materials, the latest Boeing 787 aircraft are approximately 20% more fuel-efficient than other aircraft of similar size, resulting in approximately 20% reduced greenhouse gas emissions. For other aircraft as well, airline companies are making an effort to use low-emission engines when acquiring new equipment.

■ Promoting GPU use, discouraging APU use

Carbon dioxide emissions can be significantly reduced if power and other services are provided to parked aircraft by ground power unit (GPU) instead of an onboard auxiliary power unit (APU). GPU utilization at ITM is on the rise. GPU hours utilized were about 4% higher in fiscal 2016 compared to 2011 when data was first collected. Notably, CO_2 emissions reduced through the use of GPUs amounted to 16,000 tons in fiscal 2016.

• Use of GPUs

GPUs provide electrical power and air conditioning to parked aircraft (as depicted in photo below, taken at ITM).

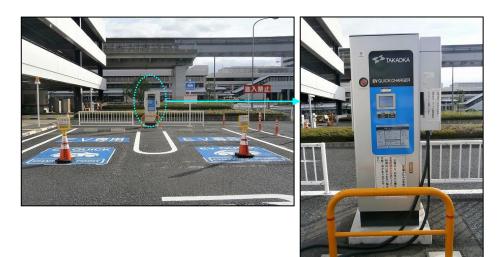
As example of the significant benefits, a Boeing 777 emits 1,166 kg/hr of CO₂ when using an APU, but only 50.8 kg/hr with a GPU, resulting in a large reduction in emissions. Source: AGP Group (http://www.agpgroup.co.jp/agp/airport.html)

Vehicle idling prevention campaign

We are also helping to reduce CO_2 emissions by reducing vehicle fuel consumption, through awareness campaigns to promote eco-friendly driving habits, including encouraging drivers not to idle their vehicle engines while stopped.

Promoting the use of public transportation

To promote the use of public transportation by our airport users, we offer connecting passengers free limousine bus services between ITM and KIX airports, and work with public transportation companies to ensure good long-distance bus services.



■ Introducing eco-vehicles for operations

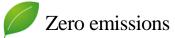
Airports typically use many vehicles as ground support equipment (GSE) for aircraft operations, and transporters (passenger vehicles) to move people around, so the use of "eco-cars" or eco-friendly vehicles can help to reduce their CO_2 emissions.

The adoption rate of eco-vehicles at ITM currently stands at 23.1% and it is gradually increasing. Meanwhile, to promote the general use of electric vehicles, drivers need to have access to charging equipment, so ITM has been installing charging stations in airport parking areas.

• Charging station for electric vehicles Quick charging stations have been installed in ITM parking lots.

Promoting the use of clean energy

Installing photovoltaic systems


ITM has installed photovoltaic systems (solar power generation) to promote the use of clean energy.

•Photovoltaic panels

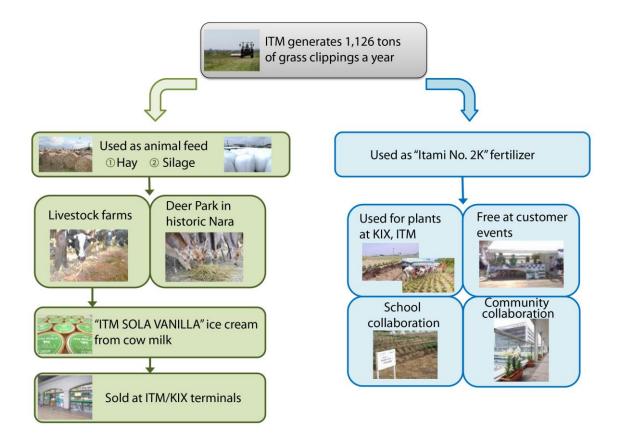
Solar panels installed on roof of ITM administrative building

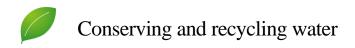
(3) An airport that recycles resources

■Reducing and recycling waste as a resource

At ITM we are working to boost recycling rates and limit the amount of waste generated, by measures such as proper waste separation, making use of grass clippings from runways (as animal feed and compost, as shown on next page), re-using office materials, and recovering resources from waste, etc.

• Waste is collected in separate bins for recycling, and different materials are handled separately Separation of waste is an important step in recycling.


• Preparation before resource recovery (examples of deconstructing, breakdown and sorting)

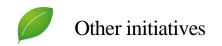


Initiatives as an eco-friendly, resource-recycling airport

- Osaka International Airport produces about 1,126 tons of grass clippings annually from maintenance along the runways.
 - →Clippings are composted and processed into organic fertilizer for reuse at ITM and local elementary schools, etc.
 - →Clippings are also fermented to produce silage and reused as feed provided at no cost to livestock farms and the Foundation for the Protection of Deer in Nara Park, etc.
- The fertilizer from grass clippings has been registered by the Ministry of Agriculture, Forestry and Fisheries as Itami Airport 1, 2, and 2K brands (October 25, 2015). This is first case of any Japanese airport to achieve such recognition.

Promoting water conservation

Businesses at ITM airport are promoting water conservation through various means, including the use of automatic faucets in sinks for handwashing, and noise generators in women's toilets that reduce the need to flush. Additional approaches include adjusting water pressure and flow rates of toilets and hand washing faucets, using displays and notices, and applying stickers as reminders for users to conserve water.


Using rainwater

Some businesses at ITM are reducing clean water consumption by collecting rainwater for uses such as sprinkling and watering (surfaces, plants, etc.).

• Rainwater storage tanks

Rainwater falling on airport facilities is captured, stored, and then pumped out for other uses. This helps to reduce the consumption of clean water.

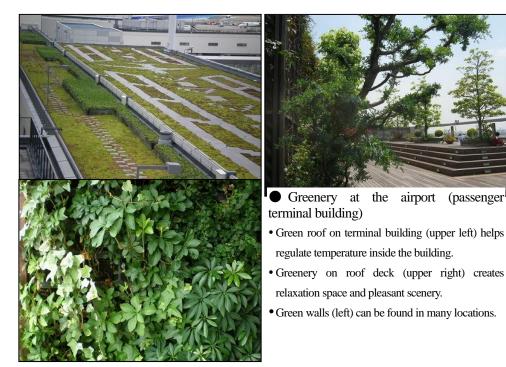
Donating retired equipment for other uses, grant assistance

Kansai Airports donates retired airport fire trucks from Osaka International Airport for use in developing countries.

(4) An airport that respects biodiversity

■Parks and green spaces near the airport

Around the airport there are parks and other areas that have been developed on vacant sites after residents have relocated away under the relocation compensation program. One example is the Fureai Ryokuchi (Friendship Green Square), with its open area and biotope providing space for visitors to have contact with nature.



Biotopes in the Fureai Ryokuchi

- These urban biotopes include water features to attract dragonflies and other living things.
- The flowing water, ponds, rocky banks, and aquatic plants support a diversity of habitats.

Creating green space at the airport

Osaka International Airport has planted green areas and a "Flower Campus" on the roof of the passenger terminal building. The planting of flower beds instead of grass helps reduce the need to cut grass and also improves the scenery.

- Greening around buildings: "Flower Campus"
- Designs are developed by students of Osaka Prefectural Engei High School (specializing in horticulture), and teachers, students and airport staff cooperate to manage the greenery. This activity was done once in fiscal 2016.

Greening the airport (around buildings): "Butterfly Garden"

The school also helped to develop the "Butterfly Garden" as one type of "biotope." It features plants that attract butterflies and other insects. To celebrate the garden, the "ITM Airport Academy: Seminar on Insects" was held once in fiscal 2016.

- Greening inside the airport terminal buildings
- We also install greenery in many places inside the terminal buildings, creating comforting spaces.

• Greening on the airport grounds

• We also have green rooftops of ITM administrative buildings to promote greenery and reduce CO₂ emissions.

(5) An airport that respects the local community

Information disclosure

Publishing environmental monitoring data and environmental reports

Osaka International Airport publishes environmental monitoring data and environmental reports.

- Environmental monitoring data (aircraft noise measurements, in Japanese): http://www.kansai-airports.co.jp/efforts/environment/itm/monitoring/
- Environmental reports:

http://www.kansai-airports.co.jp/en/efforts/environment/itm/ecoairport/index.html

Dialogue with the community

Osaka International Airport aims to have good communication with local communities through information sharing and mutual interactions. Below are some examples:

Exchanging views with local governments

Kansai Airports works to provide suitable forums for dialogue with local communities, and holds regular meetings with the "Council of Local Cities Near the Osaka International Airport" (consisting of ten cities) to promote measures to address aircraft noise and safety, and discuss urban planning issues in the airport area.

Releasing information on environmental efforts and programs

Kansai Airports actively uses every opportunity and medium to introduce to others its efforts to conserve the environment, including environmental initiatives around the airport, soundproofing upgrades, and more. Details are available from the website indicated below. (Nearby local governments also release information through their own websites and other means.)

http://www.kansai-airports.co.jp/efforts/environment/itm/taisaku/ (in Japanese)

Providing opportunities to learn about the environment

Kansai Airports regularly offers opportunities to learn about the environment, including classes on insects and other topics. Also, biotopes and green areas around Osaka International Airport offer great opportunities to learn about the environment. (For more information about nearby green spaces, please contact the local governments managing them.)

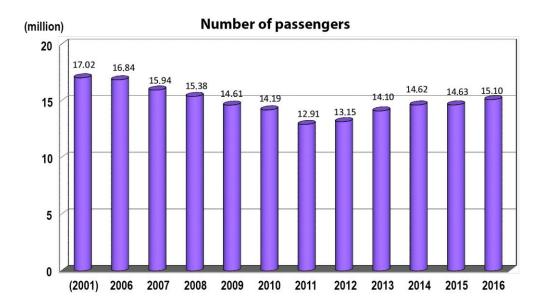
Events at the airport

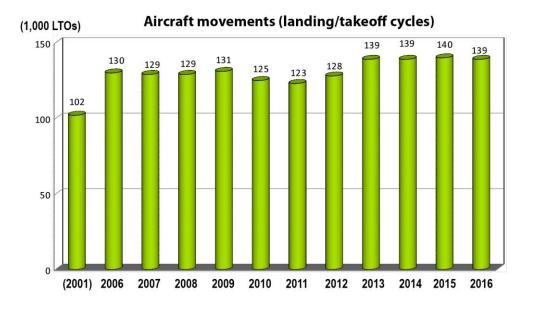
Osaka International Airport holds a variety of events at the airport, as shown below.

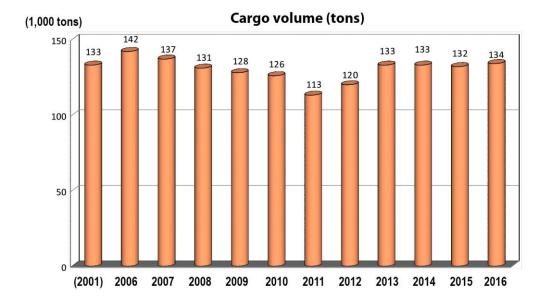
- •Osaka International Airport: Kuuraku Festa
- 17th La Sora Sketching Competition for primary school children
- ITM Airport Academy: Classes on the airport, insects, and airport lighting
- Other: ITM Airport Walks, concerts (live jazz, etc.), photo exhibitions, etc.

Cooperating with airport-related businesses

Osaka International Airport cooperates with airport-related businesses to promote environmental conservation, learning and education. The airport also exchanges information with other Japanese airports regarding efforts to conserve the environment.


4. Outline of Osaka International Airport


Opened	March 17, 1958
Location	Itami City, Hyogo / Toyonaka City, Osaka / Ikeda City, Osaka
Scale	Area: Approx. 311 ha Runway A: 1,828 m long by 45 m wide Runway B: 3,000 m long by 60 m wide



Chronology of Osaka International Airport

Year	Month	Event
1958	3	Complete return of airport from U.S. forces to Japan. Renamed "Osaka Airport" by the Ministry of
		Transport (runway was 1,828 m long)
1959	7	Designated a class 1 airport under Civil Airport Development Law, renamed "Osaka International Airport"
1960	4	International flights begin
1964	6	Passenger jet service begins
1969	1	Construction of terminal building completed
1970	2	Additional runway (3,000 m) opens and airport takes its present form
1994	9	International flights shift to newly opened Kansai International Airport
1997	4	Osaka Monorail starts operation
1999	7	Former international terminal building is renovated and opens as South Terminal
2012	4	New Kansai International Airport Company established
	7	Management of Osaka International Airport and Kansai International Airport is integrated
2015	12	Kansai Airports is established
2016	4	Kansai Airports starts operations

Appendices

Major targets and status of achievement

For each environmental parameter, this page summarizes major targets and the status of achievement at Osaka International Airport.

Parameter	Target	Status	Details	Progress	Evalu- ation
			1. Promote the use of low-emission aircraft engines	4	
			2. Expand GPU usage as much as operations permit	4	
			 Promote the use of eco-vehicles for ground support equipment (GSE), considering technological development 	3	
Air and energy	Reduce CO ₂ emission as much as possible	В	 Promote the adoption and efficient use of energy-efficient lighting and air conditioning 	4	\odot
			5. Use thorough organizational approach to energy-saving behavior	5	
			6. Convert building boilers to gas fuel	5	
			7. Organizationally promote idling prevention campaigns	4	
	Reduce noise and vibration by using		1. Promote the introduction of low-noise aircraft	4	
Noise and	ion low-noise equipment/vehicles and		2. Promote the use of GPUs	4	\odot
vibration	ground power units (GPUs)		3. Convert to low-noise vehicles for GSE-related functions	4	
	 Reduce clean water use continuously by 2% annually from FY2006 	В	1. Promote water-conservation by installing automatic faucets for handwashing, water-conserving equipment and parts	4	
Water	■ Consider using reclaimed water by installing advanced treatment	В	2. Raise water conservation awareness of airport users and others through awareness campaigns	4	\odot
	facilities at the time of new construction, additions or upgrades to buildings.		 Continue investigating the use of clean water as part of total clean water consumption at the airport 	3	
G-1	 100% ratio of use of acetic acid, formic acid-based snow-melting 	А	 Shift from urea type to acetic acid, formic acid-based snow-melting agent, which is more eco-friendly 	5	0
Soil	agent ■ Use less anti-icing/deicing fluid	В	 Consider measuring water quality when there is an increase in use or change in type of chemicals used 	4	
			1. Raise environmental awareness through campaigns and promote environmental literacy	4	
	 As target for waste reduction, do not generate more general waste than in 	А	 Regularly and continuously investigate and analyze the amount of industrial waste generated 	4	
Waste	 FY2001 Exceed 30% as the recycling rate for general waste 	А	3. Encourage proactive reuse of used products	4	\odot
	 Exceed 32% as the recycling rate for industrial waste 	В	4. Reduce volume and improve recycling rates of industrial waste	3	
			5. Promote green purchasing	3	
Nature	 Maintain the existing area of green space on the airport grounds and promote more greening and conservation to the extent possible 	А	1. Continuously care for and maintain greenery at the airport	4	3
Other	 Steadily increase the utilization ratio rate of public transportation 	В	1. Promote public awareness activities targeting travelers and travel agencies, based on cooperation and collaboration	3	
	tare of public dataportation		2. Encourage drivers to use public transportation instead of private cars	3	

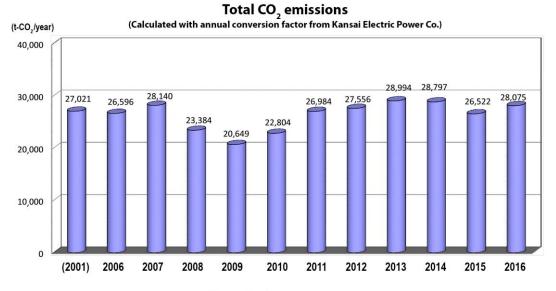
Progress toward targets of initiatives	А	В	С
Average ≥ 3.5	\odot	\odot	(:)
Average 2.5 < 3.5	\odot	(\mathbf{i})	\odot
Average < 2.5	(:)	\odot	\odot

Progress toward targets

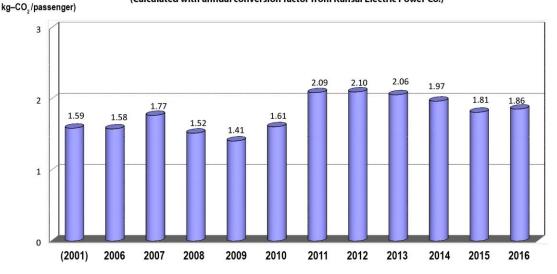
A: Steadily progressing toward target

- B: Little change from reference year
- C: Worse than the reference year
- Note: Reference year FY2006 for clean water use & soil. Others: FY2001.

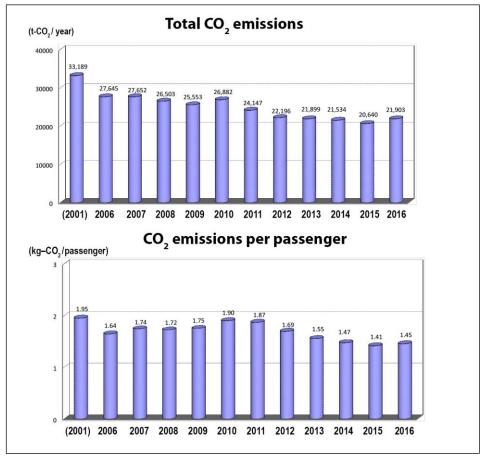
Progress of initiatives


- 5: Achieved, or expected to be achieved earlier than planned
- 4: Progressing steadily
- 3. Progressing but with delays
- 2: Moving away from target
- 1: Far from achieving target

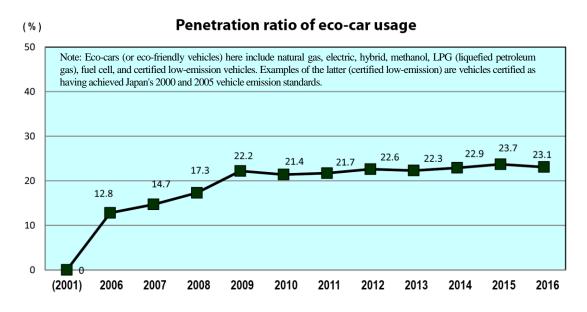
■ CO₂ emissions (air parameter)


Annual carbon dioxide emissions were on a declining trend until fiscal 2009 from the reference year (fiscal 2001). They then have tended to increase, reaching 28,075 t-CO₂ in fiscal 2016 (at approximately the same level as the reference year).

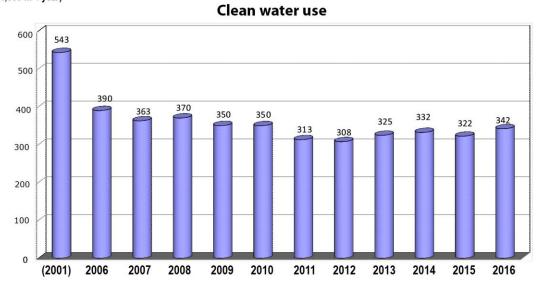
Emissions per passenger jumped in fiscal 2011, but thereafter have been level or decreasing slightly. The jump was due to a major increase in the CO_2 emission factor for electricity (due to nuclear power plants being halted) and a reduction in passenger traffic, and these are likely a result of the Tohoku earthquake and tsunami in March 2011.


Airports typically consume a large amount of electricity, so CO_2 emissions are significantly affected by changes in CO_2 emission factors (used to calculate emissions). For comparison, the graphs on the next page show how emissions would have been calculated if the CO_2 emission factor for electricity had remained the same as when the ITM Environmental Plan was adopted. The graphs show total that CO_2 emissions would be on a declining trend since the reference year, reaching 21,903 t- CO_2 in fiscal 2016 (a 34% reduction from the reference year).

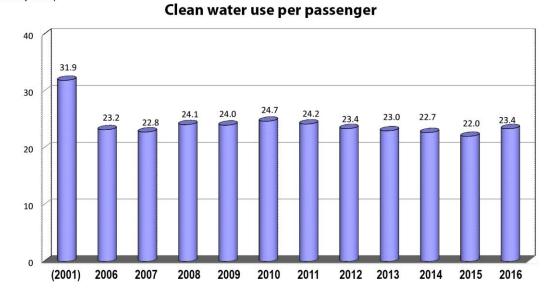
CO₂ emissions per passenger (Calculated with annual conversion factor from Kansai Electric Power Co.)


For comparison: Emissions as calculated using CO₂ emission factor from year of adoption of ITM Environmental Plan

Note: CO₂ emission factors for the year the ITM Environmental Plan was adopted are from a report by the Panel Committee on GHG Emission Calculation Methods (Ministry of the Environment, Japan, 2010).


■ Eco-friendly vehicle use (air parameter)

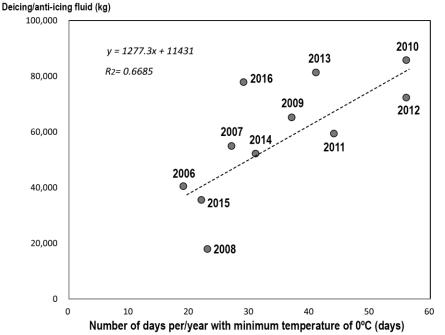
The penetration ratio of eco-friendly vehicles was increasing steadily from the reference year (fiscal 2001) to fiscal 2009, but has been generally steady since then.



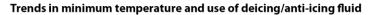
■ Clean water use (water parameter)

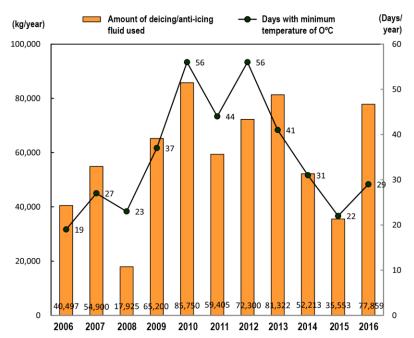
The amount of clean water used in fiscal 2016 was about 88% below 2006 consumption, and about 63% below 2001 (signifying a net average annual reduction of 1.2% since FY2006). Clean water consumption per passenger in fiscal 2016 was about 73% below the level in 2001.

(1,000 m³ / year)

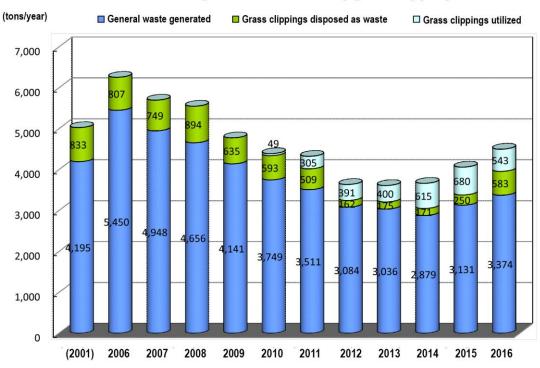


(Liters/person)


33

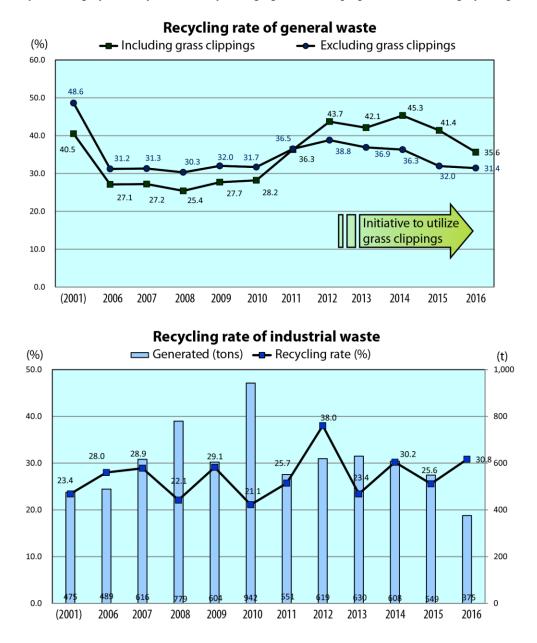

The use of snow-melting agent and deicing/anti-icing fluid (soil parameter)

No snow-melting agent was used from fiscal 2006 fiscal 2011. It was used from fiscal 2012 onward, but only acetic acid-based or formic acid-based snow-melting agents were used that have low impacts on water quality. As for anti-icing/deicing fluid, general assessments are difficult as consumption is affected by weather (minimum temperatures at the Toyonaka weather station as used as the reference point), but also by factors such as patterns of continuous low temperatures and hours of operation. The interpretation here is that there have been no particular variations in the use of anti-icing/deicing fluid.


Correlation between minimum temperature and use of deicing/anti-icing fluid

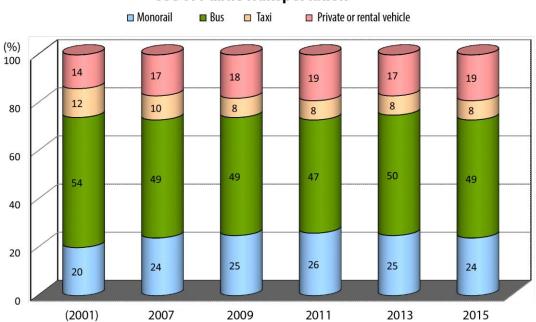
■Waste generation (waste parameter)

The amount of general waste (including grass clippings disposed as waste) increased temporarily but then declined steadily, and in fiscal 2016 was about 79% of the amount in the reference year (2001). General waste (excluding grass clippings) has been declining steadily year by year. The graph shows the beneficial impact of utilizing grass clippings effectively (to make animal feed and fertilizer) since fiscal 2010.



General waste generated (including grass clippings)

■Recycling rate of waste (waste parameter)


The recycling rate of general waste (excluding grass clippings) was slightly above 30% from fiscal 2006 to 2010, and over 35% from 2011 onward. The recycling rate of general waste including grass clippings dropped temporarily below 30%, then increased as grass clippings started to be utilized more from 2011, and has surpassed 40% since 2012. The recycling rate for industrial waste temporarily increased to 38% in 2012 but has generally fluctuated between 20% and 30%. Our environmental target for the industrial waste recycling rate is 32%, so more effort is needed in this area.

Note: Our quantity of industrial waste generated fluctuates significantly from year to year, and the amount by sub-category can vary considerably, changing the relative proportion of that category in a given year.

■Use of public transportation ("other" parameter)

Transportation access to Osaka International Airport is highly convenient, and the use of public transportation (monorail and bus in graph below) has been steady for many years, in the range of 70% to 80%.

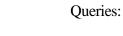
Use of Public Transportation

■Water,	energy,	waste
---------	---------	-------

				FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015	FY2016							
1 C		Electr	From grid	kwh/yr	55,203,891	54,141,511	53,782,296	53,297,296	53,657,180	49,757,239	45,422,959	44,623,981	43,751,338	42,314,587	44,262,573						
		icity	Self-generated	kwh/yr	0	0	0	0	0	0	0	0	0	0	0						
	Fa	Gas	City gas	m3/yr	1,329,443	1,254,497	1,074,364	899,702	1,070,047	1,161,421	1,051,597	1,045,743	992,832	890,282	1,131,477						
	Facilities	Gas	Propane gas	m3/yr	729	843	631	839	795	762	755	639	639	613	639						
Engeneration	es		Kerosene	ℓ/yr	55,543	80,360	76,238	54,307	54,465	55,251	55,232	60,805	50,541	46,450	54,182						
Energy use		Other	Heavy oil A	ℓ/yr	638,700	652,200	492,700	294,000	364,000	89,000	68,000	62,000	55,000	22,822	24,213						
			Light oil	ℓ/yr	0	0	0	484	920	1,047	1,128	1,303	1,578	5,357	2,297						
						Gasoline	ℓ/yr	120,724	122,944	137,069	104,399	113,814	94,075	107,193	101,586	103,293	88,296	82,399			
	Ve	Vehicles	Light oil	ℓ/yr	1,092,247	1,266,660	1,185,986	1,293,937	1,529,715	1,236,169	1,184,747	1,191,247	1,231,753	1,220,203	1,211,086						
					Electricity	kwh/yr	0	0	0	0	0	0	0	0	0	0	139,409				
	đ		Class	Clean	Tap water	m3/yr	390,020	362,890	370,326	350,229	349,870	312,973	307,657	324,640	332,194	322,275	341,931				
		water	Well water	m3/yr	0	0	0	0	0	0	0	0	0	0	0						
Water use	;	water	Other	m3/yr	0	0	0	0	0	0	0	0	0	0	0						
	F		eclaimed water	m3/yr	0	0	0	0	0	0	0	0	0	0	0						
		Wastewater treated		m3/yr	363,604	337,909	336,603	324,206	335,328	308,351	298,327	316,383	323,937	312,394	293,208						
	Ger		G		Gen		Gei		ral (excl grass clip)	t/yr	5,450	4,948	4,656	4,141	3,749	3,511	3,084	2,987	2,879	3,131	3,374
			Industrial	t/yr	489	616	779	604	942	551	619	528	608	549	375						
Waste emission	ons		Construction	t/yr	25,797	29,789	4,968	60,783	3,528	2,846	810	288	240	494	7,603						
		Grass	clippings (disposed)	t/yr	807	749	894	581	381	509	152	224	171	250	583						
		Co	ntrolled industrial	t/yr	35	67	155	28	14	21	11	7	15	18	14						

\blacksquare CO₂ conversion factors

	City gas	5	Propane	Kerosene		Heavy oil A	Gasoline		Light oil		
Conversion factor	0.00223	;	0.0066	2.49		2.71	2.32		2.58		
(Units)	t-CO₂/m	m ³ t-CO ₂ /m ³		t-CO ₂ /k	l	t-CO₂/kℓ	t-CO₂/kℓ		t-CO₂/kℓ		
Electricity to CO ₂	FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015	FY2016
conversion factors (kg-CO ₂ /kWh)	0.338	0.36	6 0.299	0.265	0.28	0.414	0.475	0.5	16 0.523	0.496	0.493


$\blacksquare CO_2$ emissions

	FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015	FY2016
CO ₂ emissions (t-CO ₂ /yr)	26,596	28,140	23,384	20,649	22,804	26,984	27,556	28,994	28,797	26,522	28,075
Number of passengers	16,842,868	15,937,494	15,382,431	14,606,951	14,193,277	12,909,665	13,147,345	14,101,239	14,620,934	14,626,431	15,100,395
CO ₂ emissions per passenger (kg-CO ₂ /person)	1.58	1.77	1.52	1.41	1.61	2.09	2.10	2.06	1.97	1.81	1.86

Vehicles

				FY2006	FY2007	FY2008	FY2009	FY2010	FY2011	FY2012	FY2013	FY2014	FY2015	FY2016
Number of vehicles		Electric	Units	11	11	10	9	9	11	11	11	11	9	9
	Eco-	Hybrid	Units	1	1	2	1	1	0	1	1	3	2	1
	friendly	Natural gas	Units	0	0	0	0	0	0	0	0	0	0	0
	vehicles	LP gas	Units	0	0	0	0	0	0	0	0	0	0	0
		Other	Units	63	73	88	100	114	107	113	113	114	113	116
	Other	Diesel	Units	396	387	373	300	372	79	85	82	74	67	69
		Gasoline	Units	105	95	94	75	73	341	339	349	357	330	345
		Other	Units	10	10	10	10	10	5	5	5	1	2	6
	Total Units		586	577	577	495	579	543	554	561	560	523	420	
	Ratio of eco-friendly vehicles %		%	12.8	14.7	17.3	22.2	21.4	21.7	22.6	22.3	22.9	23.7	23.1

Note: Low-emission vehicles using gasoline or diesel

Kansai Airports Technical Department, Smart Island Group

E-mail: kankyo@kansai-airports.co.jp

Published: January 2018